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It is likely humans will venture beyond the relative safety
of low earth orbit (LEO) during the next century, in
space-faring journeys termed exploration class missions
(ECMs).1,2 These missions will include manned mis-
sions to the Moon and, ultimately, Mars. Such a mission
to Mars could entail a period of years in which space
travelers would be unable to quickly return to Earth in
the event of a serious surgical condition.3,4 These medi-
cal care challenges are greater than the engineering
ones.4-6 Space medicine will always be limited by logis-
tical factors such as limitations in weight, volume,
power, and crew training. It will be driven by a focus on
conditions that are most likely to occur, or would have
the most impact on the crewmembers and mission. A
human surgical event has not yet occurred in space,
though injury has been ranked at the highest level of
concern regarding the probable incidence versus impact7

and is considered a critical problem for which no reliable
countermeasures exist in the National Aeronautics and
Space Administration (NASA) Bioastronautics Critical

Path Roadmap for long-duration, human space
exploration.8

On earth, hemorrhage has been identified as the lead-
ing cause of potentially preventable injury-related
death.9 Bleeding to death accounts for 80% of intraop-
erative trauma deaths,10 with more than one-half of these
arising from abdominal injuries.11 Although many
deaths result from anatomically complex wounds, many
are still relatively simple wounds in otherwise healthy
victims in whom appropriate interventions were de-
layed.12 Hemorrhage control must remain within the
capabilities of space medicine. In this regard, exploration
class space travel represents a unique paradigm.

Travel beyond low earth orbit will represent the ulti-
mate remote medical setting, yet a traumatic event in
space is very likely to occur within or adjacent to the
space vehicle or surface habitat, greatly increasing the
chances the injured astronaut will survive to “the hospi-
tal.” In this case, advanced medical technology might be
prepositioned. The health and safety of astronauts who
venture beyond earth’s orbit will depend on future ad-
vances in engineering, medicine, biology, informatics,
and robotics.13 A previous article reviewed fluid resusci-
tation in weightlessness.2 This article reviews basic ap-
proaches to hemorrhage control both within and exte-
rior to the major body cavities, and focuses on the
foreseeable challenges for future trauma care during
space flight. With mission profiles that will include hu-
man activities or even habitation on extraterrestrial sur-
faces, future planners will also have to consider the pos-
sibility of injury and treatment in reduced gravity
environments such as the Moon (1

6g) or Mars (1
3g).

Currently available hemorrhage control in space
A major traumatic hemorrhage in space on any of the
current man-rated space vehicles would be catastrophic
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because medical care systems are limited. Resuscitative
procedures are limited by available supplies and equip-
ment and training of the personnel involved. On the
International Space Station, medical care has largely fo-
cused on stabilization and expeditious evacuation back
to definitive care on earth.4 14-16 Medical specifications
for the International Space Station mandate the ability
to comply with standard advanced trauma life-support
techniques.17,18 Initiating an intravenous infusion, per-
forming endotracheal intubation, and placing a chest
tube are technically and logistically within the skill level
of the onboard crew medical officer (CMO), and have
been found to be feasible during evaluations in the tem-
porary weightlessness of parabolic flight.19 CMOs are
not required to be surgeons, or even physicians, and
currently receive only 34 hours of medical training.20

Even in low earth orbit, the International Space Station
has only 50% to 70% real-time communication cover-
age. A Mars expedition would confront the issue of com-
munication delays requiring 8 to 40 minutes for a
round-trip,14 20 making real-time contact with surgical
consultants impossible.

Cardiovascular physiology in
prolonged weightlessness
In weightlessness, a multitude of physiologic changes
occur that are likely to impair the ability to withstand
injury.4,14 These include reductions in circulating blood
volume, reduced red cell mass, cardiac atrophy and re-
duced cardiac outputs, alterations in vascular tone and
neuroendocrine function, loss of the protective bony
mass, and possible immune suppression.4,13,14,21-23 What
degree of partial gravity, if any, would ameliorate these
changes is also unknown.20

Astronauts lose 10% to 23% of their circulating
blood volume during space flight, resulting in an earth-
equivalent hypovolemic state.24-27 A further “anemia of
space flight,” with a decreased red cell mass, is consis-
tently seen after long-duration space flight and would
aggravate the effects of blood loss. Mean decreases in red
cell mass approximate 10% to 20% of preflight.28-30

During space flight, the working parameters of the neu-
rohumoral and cardiovascular system are reset. Research
suggests that there may be a global resetting of the auto-
nomic nervous system with either a beta compared with
alpha receptor bias, or impaired receptor sensitivities,
resulting in an overall attenuation of the cardiac chrono-
tropic response.7,23,31-34 The resultant attenuation of aor-
tic, cardiopulmonary, and carotid baroreflex responses
to hypotension would presumably decrease the ability of
astronauts to respond appropriately to hypovolemic
stress.30,35

Trauma in space
The majority of trauma in space is likely to be blunt in
nature.4 14 Extravehicular activity (EVA or “space-walk”)
is believed to be one of the riskiest activities. There are
potential risks of penetrating space injuries during EVA
from micrometeorites,20 the lethality of which would
depend on the body area of impact, impact size and
integrity of the suit pressure seal, and proximity to air-
lock ingress. Blunt trauma may differ from the typical
decelerative injuries seen after terrestrial vehicular
crashes, with crushing injuries more likely.20 This is from
the movement of high mass structures during EVA per-
formed for space flight construction.14 In such settings,
astronauts might be dehydrated, losing an additional 0.7
to 2.2 kg of fluid in the Russian EVA experience.23 In
animal models, premorbid dehydration markedly com-
promises the ability to survive hemorrhage.36,37 Severe
head injuries, which typically occur in 60% of severe
terrestrial blunt trauma,38 might also be less frequent
because of the protection offered by the rigid space hel-
met. If death and disability from serious head injury are
reduced, this will magnify the importance of providing
effective hemorrhage control in space.

Bleeding characteristics will differ in weightlessness.
The majority of surgical bleeding results in fluid domes
that remain at the site of bleeding or adhere to adjacent
objects such as gloves and instruments, rather than free
bleeding.25,39,40 The force and volume of venous bleeding
increase in space as compared with 1g, possibly because
of the lack of venous wall compression.4,41,42 Russian
reports of increased parenchymal congestion and blood
pooling in the abdominal viscera during the year-long
MIR mission43 suggest that intraabdominal hemorrhage
might be increased as well.

Abbreviations and Acronyms

CMO � crew medical officer
EVA � extravehicular activity
IR � interventional radiology
MIS � minimally invasive surgery
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Conceptual approach to hemorrhage control
in space
Hemorrhagic shock resulting from blood loss can occur
either externally from open wounds, including those
that communicate with the gastrointestinal, respiratory,
or genitourinary tracts, or internally from bleeding into
closed anatomic spaces. In adults, these spaces are the
thoracic cavities, intra- and retroperitoneal spaces, and
the soft tissues of multiple extremities.44 Unfortunately,
multisystem trauma can involve combinations of all
sites. External blood loss should be readily detected by
careful observation and palpation. In operational set-
tings, many physically robust individuals have exsangui-
nated from wounds that could have been quite readily
treated had simple first aid been available.12,45,46 Truncal
hemorrhage presents challenges of a new magnitude.
Intracavitary bleeding occurring inside the thoracic and
abdominal cavities will be more difficult to detect and
will require greater skill and resources to control. A clas-
sification of potential technical measures for hemor-
rhage control in space is given in Table 1.

Extracavitary hemorrhage control
Both advanced and prehospital trauma life-support
courses currently recommend direct pressure as the most
effective means of controlling life-threatening external
hemorrhage.47-49 Although this conceptual approach has
changed little in 2000 years, recent developments in
wound dressings have improved the effectiveness of di-
rect pressure. The United States Army has evaluated a
number of hemostatic dressings for testing in complex
models of active hemorrhage. Candidate hemostatic
dressings that have all shown efficacy in specific circum-
stances include microfibrillar collagen, oxidized cellu-
lose, thrombin, fibrinogen, propyl gallate, aluminum
sulfate, fully acetylated poly-N-acetyl glucosamine, and
chitosan.50 Overall, stringent testing in these challenging
models has confirmed statistical superiority in hemor-
rhage control for a dry fibrin dressing comprised of “fi-
brin glue” components.50,51 In a porcine aortic injury
model, such a dressing appeared as effective as suture
repair in hemorrhage control.51 These dressings have
shown decreased blood loss even in settings in which
distal arterial flow can be preserved.52

Other novel, externally applied hemostatic agents are
becoming available. QuickClot (Z-Medica) is a granular
zeolite with an extremely long shelf life that exothermi-
cally adsorbs water to promote clotting. It can simply be

poured into a wound by an untrained responder,53,54

noting that nothing “pours” in weightlessness. This
agent significantly reduced mortality in a complex groin
wound model compared with both control and standard
dressings,53 although there are concerns regarding sec-

Table 1. Classification of Potential Technical Measures for
Hemorrhage Control in Space
Extracavitary

Direct pressure
Tourniquet
Direct tissue clamping
Air splint
Fibrin bandage
Quick Clot
Chitosan dressing

Intracavitary (performed by on-board surgeon, telementored or
decision-supported novice, or robotics)
Open surgery

Traditional definitive
Abbreviated

Cavitary endoscopy
Internal tamponade
Minimally invasive surgery

Angiographic
Vasoactive manipulation
Angioembolization

High-frequency ultrasound
Open
Percutaneous
Cavitary endoscopy

Adjunctive
Intracorporeal

Optimize
Temperature
pH
Platelets
Clotting factors
Fibrinogen
Circulating volume and blood pressure

Pharmacologic
Recombinant factor VII
Transexaminic acid
Aminocaproic acid
DD arginine vasopresin (DDAVP)
Vasopressor agents
Inotropic agents

Extracorporeal
Cardiovascular support
Controlled exsanguination
Suspended animation
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ondary thermal effects. Chitosan is a complex carbohy-
drate that demonstrates mucoadhesive activity.55 Light-
weight and flexible chitosan dressings have markedly
reduced hemorrhage and improved survival compared
with gauze packing in a severe swine liver injury model.55

Additional comparative studies in space conditions are
required, but if equivalent, logistics would favor the
lightest, safest, and most compact choice.

“Tactical tourniquets” are appropriate in operational
settings when necessitated for life-threatening
bleeding,48-56 but carry risks if left in place beyond 2
hours.57 Pneumatic tourniquets apply pressure in a more
evenly distributed fashion around a limb, reducing tour-
niquet edge stresses that can damage nerves.58,59 Recog-
nizing this safety aspect, an expert panel has recom-
mended the greater availability of this type of tourniquet
in the combat casualty setting (personal communica-
tion, JB Holcomb, April 21, 2004). So the trauma pod
of a space vehicle or habitat might be equipped with this
capability as an initial response to serious extremity
hemorrhage.

Intracavitary hemorrhage control
Ninety-nine percent of civilian hemorrhagic deaths are
from truncal injuries not amenable to manual compres-
sion.60 Early recognition of such serious injury might be
aided by biophysical monitoring devices that would be
worn during EVA activity, providing an early indication
of vital sign irregularity.20 Besides standard measure-
ments, noninvasive candidates for early detection of
physiologic distress include near infrared spectroscopic
or transcutaneous monitoring of tissue oxygen or sub-
lingual capnography.61-65 After serious injury, standard
life-support measures such as airway protection and
drainage of hemopneumothoraces would be required
and would be followed by an intravenous infusion, all
demonstrated to be feasible in weightlessness.4 14 17 Fluid
resuscitation in space has been previously reviewed,2

but will be of secondary importance compared with the
need to rapidly localize and address major internal
hemorrhage.

Diagnostic imaging for localizing sites
of hemorrhage
On earth, CT is the most accurate and expeditious
means of imaging an injured patient. The use of multi-
detector CT scanners in trauma applications is expand-
ing.66 Functional magnetic resonance (MR) is another

aspect of imaging that also assesses physiologic functions
including blood flow, oxygenation, and metabolic activ-
ity.67 MR imaging can now be performed intraopera-
tively, with many terrestrial operating rooms currently
equipped with this technology.68,69 A lightweight MR
could be constructed given current technology. In this
way, real-time three-dimensional imaging of a sick or
injured astronaut could be provided on board a space-
craft. Satava70 stressed the information systems integra-
tion benefits of total body scans (holomers). Imaging of
the human body is also recognized as an important re-
search opportunity for space flight.6

At present, none of these imaging technologies is in
orbit, but diagnostic ultrasonography is.22,71,72 On earth,
early use of ultrasound to screen the traumatized victim
is an important resuscitative measure with a Level I rec-
ommendation.73 The diagnostic utility of focused ultra-
sound is maintained in weightlessness.72,74-76 The Fo-
cused Assessment with Sonography for Trauma (FAST)
imaging protocol was validated during expedition five of
the International Space Station (personal communica-
tion, J Jones, July 14, 2004). Hemothoraces after blunt
injury can also be rapidly detected with ultrasound both
on earth77 and potentially in space.76

As a further refinement of two-dimensional ultra-
sound, three-dimensional ultrasound appears to be a re-
liable and reproducible method of measuring irregular
fluid and blood collections.78-80 Fully automated volume
calculations, combined with transducers that automati-
cally perform fast real-time sweeps of a predefined area
(four-dimensional technology),79,81 offer the potential
for generating continuous real-time assessment of vis-
ceral hemorrhage. The ideal posttraumatic imaging
technology would create the astronauts’ holomer, iden-
tify areas of intracavitary fluid accumulation, and eval-
uate the rate of accumulation. Terrestrial bleeding rates
of 25 mL per minute have been estimated to allow a
2-hour window before death; a blood loss of 100 mL per
minute would be fatal on earth in 30 minutes.82

Decision-support software accounting for individual
and space acclimatized physiology might then deter-
mine when an alarming rate of bleeding was occurring
despite treatment measures to conclude that high-risk
but necessary invasive operative control was required.

Surgical procedures in space
Conventionally, when ongoing intracavitary hemor-
rhage with hemodynamic instability is identified, defin-
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itive surgery should be performed promptly to control
the hemorrhage.44,47 The technical performance of open
surgery in space should be no more difficult than in a
terrestrial environment with proper restraint of the pa-
tient, operators, and equipment, assuming there is an
appropriately trained CMO.4,83-86 To date, no human
surgical procedure has ever been required or performed
in space,4 although operation with full recovery of ani-
mals was performed on STS-90 during the Neurolab
mission.87 As early as 1983, a council of trauma sur-
geons, space physicians, and biomedical engineers con-
cluded that the capability of performing laparotomy on
board a space station before transfer to earth could be
lifesaving.88 Any discussion of surgical requirements for
space exploration must include the limitations in terms
of personnel, material, and human physiology involved
in longterm space habitation.4 14 The original plans for
the Space Station Freedom mandated a Level III trauma
capability, supporting the ability to perform a laparot-
omy. Currently, the International Space Station has only
minor surgical capabilities and local anesthetics.4,18,89

With great commitments to CMO surgical training and
medical care system resources, surgical capability could
be provided aboard a new class of space exploration ve-
hicle. It would represent the most tested intracavitary
hemorrhage control technique.

Minimally invasive surgery
Besides the obligatory surgical trauma inevitable in open
surgery, there are concerns regarding environmental
contamination of the closed circuit environment of the
spacecraft atmosphere with biologic contaminants, and
with protecting the patient from this same environment
and heat loss.20,90 Microorganisms in space appear to
have greater virulence and resistance to common antibi-
otics, and will not settle out of the environment, as in
gravity.20 Opening closed body cavities under operating
room lights is believed to be one of the greatest thermal
stresses to which an injured patient may be subjected.91

Minimally invasive surgical (MIS) techniques use the
general principles of minimizing access incisions and
completing the operative procedure within the patient’s
closed internal cavities.92 MIS for trauma in space has
initial appeal and has been found to be feasible in
weightlessness during parabolic flight.85,86 Benefits
would include minimizing postoperative morbidity,
shielding the cabin environment from biologic compo-
nents, protecting the patient from environmental partic-

ulates, maintaining thermal stability, and facilitating
blood collection and autotransfusion. Surgical endos-
copy can be used to diagnose the presence and source of
hemorrhage, to evaluate the degree of organ injury, to
aspirate and collect shed blood for autotransfusion, and
to perform some therapeutic procedures.93,94 Instilled fi-
brin sealant foam (FSF) has been shown to significantly
decrease hepatic bleeding in animal models compared
with no treatment or placebo foam.95 Fibrin sealant
foam is believed to bond only to damaged intraperito-
neal surfaces,95 so it could conceivably be injected into
the body cavities through an MIS technique.

Despite these theoretic advantages in MIS, there are
safety concerns. Because of the vascular volume contrac-
tion and cardiac deconditioning, astronauts would be at
a greater risk of hemodynamic compromise with raised
thoracoabdominal pressure. In addition, even on earth,
the exact role of MIS in evaluation and treatment of
traumatic injury remains uncertain.96

The damage control approach
If experienced surgeons will not be available in space,
then the goals of any intervention must be focused and
simplified. “Damage control” describes a constellation
of approaches to surgical problems beyond immediate
local capabilities or patient physiology, constituting a
staged approach to surgical problems.97,98 A “damage
control” or “abbreviated” laparotomy constitutes hem-
orrhage control, prevention of enteric spillage, and a
ready acceptance of planned secondary or tertiary
reoperations.97-99 The procedure must be accomplished
quickly without exhausting the patient’s physiologic re-
serve by minimizing blood and heat loss. On earth, this
approach has generally been associated with severely in-
jured patients. In space, limitations in resources or abil-
ities of on-board medical care may warrant the same
conceptual approach to injuries of lesser magnitude.
Any procedures beyond the capabilities of the CMO
could be managed in a staged or minimalist approach,
allowing for temporizing measures to be instituted
rather than committing irreversible anatomic alter-
ations. Many of the technical requirements to abbreviate
a laparotomy are conceptually and functionally much
simpler than the more complex procedures required for
elective surgery.98-101 Even traditionally simple surgical
tasks might be completed in a staged approach, allowing
“just-in-time learning” and virtual reality-based
rehearsals.
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Although it would be daunting for a nonsurgeon to
perform a laparotomy, the actual technique of opening a
standard midline incision is technically quite simple,
and has been performed successfully by specially trained
paramedics in dire circumstances.102 It is what to do after
opening that constitutes the real challenge. Prompt sur-
gical use of gauze packing to arrest otherwise uncontrol-
lable hemorrhage is believed to be a major advance in
trauma care in the last several decades.98 European au-
thors favor pelvic packing as the initial approach to pa-
tients in extremis from severe pelvic fractures.103 Both
fibrin sealant and dry fibrin sealant bandages have been
effective in reducing blood loss compared with either no
intervention or standard gauze packing in swine
models.104-106 Neither of these materials mandates reop-
eration for removal.104 106 In a worst-case scenario, when
the on-board imaging system recognized ongoing intra-
cavitary bleeding commensurate with death, the CMO
would quickly open the cavity, pack with both fibrin
bandages, or foam, and subsequently leave the abdomen
open to assist with ventilatory management.

Potential percutaneous interventions for space
Although the previous approach might be initially life
saving, it would raise a host of secondary medical, nurs-
ing, psychologic, and mission-specific concerns related
to caring for an open abdomen in space. Even on earth,
this management remains fraught with opinion and
controversy with little controlled data. It is thought to be
a major conceptual advance in trauma care, but results in
a postoperative condition that is extremely intensive in
terms of human labor. Any means of hemorrhage con-
trol applied through an otherwise intact body wall is
inherently desirable.

Pneumatic compression
The application of increased intrathoracic airway pres-
sure in the form of positive end-expiratory pressure to
create a tamponade effect has been described in cardiac
surgery.107 Controlled studies of this approach did not
confirm a hemostatic benefit,108,109 and the excessive
pressure impeded the venous return, worsening hemo-
dynamics.108 A similar approach has been suggested in
the peritoneal cavity, where the degree of increased
pneumoperitoneum pressure inversely correlated with
reduced splenic bleeding in a standardized injury.110 But
major hemorrhage reduces the safe and tolerable level of

intraperitoneal pressure,111 even without considering the
circulatory volume contraction of space.

Pneumatic counter-pressurization is an aerospace
medical countermeasure used for many years to prevent
adverse pulmonary and cardiovascular effects of hyper-
gravity and positive pressure breathing,112-114 and is cur-
rently a standard countermeasure worn by pilots during
the critical shuttle landing phase.23 A novel method of
preserving cardiac performance, rather than embarrass-
ing it through reduced preload, is electrocardiographic-
synchronized, high-frequency jet ventilation. Cardiac
output and oxygen delivery are increased with this ven-
tilatory mode compared with ventilatory and unsyn-
chronized jet ventilatory modes, especially with ventric-
ular failure.115,116 Although terrestrially, these benefits
may not be marked in patients with augmented circula-
tory volume and preserved ventricular function,117 118 an
astronaut will be comparatively hypovolemic and sub-
jected to cardiac atrophy as discussed. Earlier work with
phasic intrathoracic pressure used abdominal and chest
wall counter-pressurization to significantly increase car-
diac output.119 If G-suits are manifested for space use,
consideration might then be given to exploring their full
potential in a “smart” configuration to provide partial
hemodynamic support in the presence of raised intra-
cavitary pressures.114 This would allow a time window
for other nonoperative hemostatic measures to assist in
arresting hemorrhage.

High-intensity focused ultrasound
High-intensity focused ultrasonography uses ultrasound
energy focused into an effective volume about the size of
a grain of sand.120 Potential advantages for space include
its use in visceral hemorrhage control within the sub-
stance of an injured organ, without charring or burning.
This suggests the potential for percutaneous use.120-123

Through acoustic streaming and cavitation resulting in
blood coagulation and tissue homogenization, the tech-
nique has been used to provide an effective hemorrhage
control method for injured organs with active “wet”
bleeding in controlled animal models.121,122

Percutaneous interventional capabilities
The ability to introduce a catheter into a major blood
vessel is a basic skill that a CMO should possess. This
would allow introduction of a guidewire over which can-
nulae could be placed into the central circulation. Sim-
ple needles with an integrated ultrasound transducer at
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the tip have been available for some time, with mixed
results.124-126 Newer generations of smart catheters
would continue to use portable ultrasound, but would
envision a fully automated vascular target identifica-
tion.127 Future development of robotic capabilities could
potentially use three-dimensional ultrasound, CT, or
MR imaging to complete the catheter insertion autono-
mously. This would then facilitate pharmacologic ma-
nipulation of the cardiovascular system, extracorporeal
hemodynamic support, thermal control, therapeutic in-
traluminal interventions, and potentially facilitate either
suspended animation or euthanasia, if coupled to
“smart” autonomous systems. Initial work has suggested
that closed-loop resuscitation using fluid administration
proportional to the measured value of a predefined end
point may achieve favorable outcomes with less overall
fluid administration and avoidance of over-
resuscitation.63 Although skilled human performance of
these interventions would be desirable, all are potential
areas of robotic research.

After prolonged weightlessness, the vasopressor re-
sponse will likely be attenuated and the vasculature in-
herently vasodilated.2 14 23 There may be vasodilatory
mediators induced by either traumatic128 or septic path-
ways.20,129,130 Vasodilatory cardiovascular decompensa-
tion could be profound and requires carefully titrated
vasopressor infusion, which should only be given into
the central circulation to prevent tissue injury.

Systemic hypothermia is common after serious injury
and is associated with death in multisystem trauma.131-133

It has been stated that standard rewarming measures
cannot sustain the necessary heat transfer levels required
to prevent acquired hypothermia in the seriously in-
jured.134 For this reason, extracorporeal rewarming
methods have been developed that rewarm hypothermic
trauma patients significantly faster, using either the pa-
tient’s own perfusion pressure135 136 or centrifugal blood
pumps137 to perfuse heparin-bonded circuitry. Simple
heat-exchanging catheters using endovascular saline-
perfused balloons with closed-loop computer feedback
have been shown to be remarkably effective in prophy-
lactically controlling the body temperature of patients
with severe traumatic and nontraumatic head injuries
who are hemodynamically stable.138,139 These devices
have the capability to warm to 42°C, and might be used
early to prevent hypothermia-induced coagulopathies.

Potentially, the greatest benefit of vascular access
might be to facilitate therapeutic occlusion, emboliza-

tion, or stenting of damaged blood vessels. General an-
esthesia is not necessary and sterile fields are much re-
duced. Interventional radiology (IR) procedures are
regularly used as adjunctive techniques to augment at-
tempts at hemorrhage control after serious injury.140-142

Primary uses of IR procedures also obviate the need for
formal operations in some situations.143-146 Some groups
believe IR is a superior approach when feasible, because
it can potentially spare intraoperative hypotension in the
severely head-injured group,144 a known independent
cause of secondary brain injury.147 Combined CT and
angiography suites capable of providing immediate IR
after CT have been used for the critically injured.143 The
extension of this concept to a combined resuscitative/
critical care pod with CT, IR, operative capabilities, and
critical care is intuitive.

Blood and blood product administration
The rationale for administration of blood and the devel-
opment of a space-specific hemoglobin-based oxygen
carrier has been previously reviewed.2 More than 20
years ago, consensus opinion regarding trauma acknowl-
edged blood transfusion as a rate-limiting step in man-
aging severe trauma in space. It was suggested that fresh
blood transfusions could be taken from a crew selected
on the basis of blood type compatibility to facilitate
“warm” transfusions.148 Although there are a number of
reasons why astronauts would not wish to either donate
or receive a complex biologic product such as
blood,107 149 uncross-matched, untested, fresh whole
blood has often been required in contemporary military
operations.46 Fresh whole blood was required in Somalia
and, subjectively, the surgeons were impressed with its
ability to ameliorate acquired coagulopathies.46 It is ex-
tremely unlikely any blood product replacements could
be available other than lyophilized platelet products,
which although promising, are still in the very early
stages of development.150,151 In the future, autologous
products might be stored for individual or general crew
use, but currently it is necessary to consider adjuncts that
might ameliorate posttraumatic coagulopathies.

Adjunctive and pharmacologic measures for
hemorrhagic shock
The most basic adjunctive methods for maintaining
hemostasis involve preserving or correcting normal
physiologic parameters of temperature, pH, platelets,
clotting factors, and fibrinogen, and avoiding hyper-
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resuscitation and hypertension.107,152 Given the im-
mense challenges of addressing hemorrhagic shock in
space, those measures may be impossible or insuffi-
cient. Even in the best equipped terrestrial trauma
centers, coagulopathies are common in the most se-
verely injured patients.153 In anticipation of this,
drugs might be given either individually, or as a
“trauma cocktail,” to complement physical therapies
on gaining vascular access. Such a cocktail might con-
tain oxygen-carrying, vasoactive, antiinflammatory,
and procoagulant agents.

The fibrinolytic system is immediately activated after
trauma and remains elevated in patients with major in-
juries,154 so systemic antifibrinolytics might enhance he-
mostasis after trauma. A number of commercial prepa-
rations are available, including aprotinin, tranexamic
acid, and �-aminocaproic acid,154-156 although most of
the evidence is from elective cardiac surgery.157 Aproti-
nin is a general inhibitor of proteases involved in fibri-
nolysis, inflammation, complement activation, and the
kinin pathway, and may stabilize platelet membrane
binding functions.107,155 158,159 Aprotinin has been consis-
tently shown to reduce blood transfusions during car-
diac and hepatic surgery,156 157,159-161 and has been associ-
ated with almost twofold decreases in mortality in
certain circumstances.162 163 These agents have also been
effective in controlling bleeding, even in the absence of
documented hyperfibrinolysis.158 Other antifibrinolytic
agents such as tranexamic acid and �-aminocaproic acid
have shown promise157,160 and have reduced blood re-
quirements in off-pump cardiac surgery, in which co-
agulopathies caused by the extracorporeal circulation
cannot be implicated.158 164 Tranexamic acid specifically
reduces blood transfusions in orthopaedic operations us-
ing exsanguinating tourniquets.165,166 Even the short-
term application of a tourniquet greatly raises fibrino-
lytic activity,167 which might further justify the use of
tranexamic acid if such physical compression were re-
quired. Desmopressin is a vasopressin analogue that im-
mediately raises factors VIII, XII, and von Willebrand
factors after administration.107 156,158 Although there
were enthusiastic early reports of desmopressin use,
more recent studies of potential hemostatic benefits in
previously normal individuals undergoing major surgery
do not suggest a benefit.158 160,168,169

Recombinant factor VIIa specifically acts at the local
site of injury where tissue factor and phospholipids are
exposed, potentially leading to a 1 million–fold ampli-

fication of localized coagulation.60,155 158 It facilitates he-
mostasis by activating the tissue factor–dependent path-
way.154 Despite theoretic concern, no increased
incidence of prothrombotic complications has oc-
curred.158 Early use of rFVIIa in the field has been sug-
gested as a potential means of promoting stable hema-
toma formation in soft tissue and visceral injuries and to
protect patients from renewed bleeding after fluid resus-
citation.82,170 Remarkable, but anecdotal cases of rescue
from refractory coagulopathic bleeding when all other
measures have failed have been recently reported.171-174

Whether these spectacular successes can be confirmed in
a prospectively randomized multinational trauma trial is
yet to be determined.

Extracorporeal support and suspended animation
If the wounds sustained are beyond the capabilities of
the medical resources on board, exsanguination might
be inevitable. A high-flow heparin-bonded extracorpo-
real circulation might offer potential “heroic last-ditch”
options: one to ameliorate the vascular failure of end-
stage shock in an attempt to maintain perfusion of vital
organs, the other to accept vascular collapse and to at-
tempt to induce tolerance to such collapse.102 A centrif-
ugal vortex blood pump with an oxygenator has been
previously used for cardiopulmonary support in the crit-
ically injured.175 This technology might bridge a period
of extreme hemodynamic instability, or allow oxygen-
ation of a patient suffering from a severe respiratory
insult such as a massive toxic inhalation, but would be
unsatisfactory for anything but a quick extraction from
low earth’s orbit.

Suspended animation comprises treatment to pre-
serve the viability of the entire organism from ischemia
during no flow or very low (shock) states.176,177 This time
window is intended to allow transport to definitive care
and repair in a bloodless field, followed by controlled
rewarming. The goal is to induce such a state with either
hypothermia, pharmacologic agents, or special fluids. At
present, the main modality for inducing such tolerance
has been ultraprofound hypothermia, which allows for
up to 2 hours of pulseless viability in large animal
models.177-179 Current efforts in this field include devel-
opment of fully synthetic solutions that completely re-
place the circulating blood volume after total body
washout.178 Whether directed pharmacologically engi-
neered resuscitative solutions containing buffers, anti-
oxidants, inhibitors of the ATP-sensitive potassium
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channels, and oxygen-carrying solutions might be of
benefit in these situations is speculative. During an ex-
ploration class mission, this window might allow for
“just-in-time” learning, virtual reality rehearsal, and
damage control in a bloodless field, rather than defini-
tive evacuation. Although isolated supercooled (not fro-
zen) cat brains have maintained elements of viability for
more than 200 days,180 many future advances to allow
longterm suspended animation remain to be discovered.
Any increase in the viable windows though, will be of
immense benefit.

In conclusion, long-duration space flight presents a
unique paradigm, being the ultimate remote medical
care setting, but one where advanced technologies might
be available to aid in hemorrhage control. No single
method would be expected to be sufficient for all possi-
ble scenarios, yet logistics will require selection of only
certain capabilities. Experienced surgeons offering tradi-
tional interventions would be highly desirable, but mis-
sion requirements may preclude this. Novel strategies
and technologies using advanced imaging technologies,
decision-support software, modified damage control al-
gorithms, semi or fully autonomous vascular access, cir-
culatory support and manipulation, and development of
physical and pharmacologic adjuncts to hemostasis may
all have potential utility. The International Space Station
represents the most complicated multinational project
in history that could provide a unique medical research
platform to address surgical issues related to long-
duration space flight. When fully operational, the sta-
tion should support the centrifuge accommodation
module, which would allow performance of detailed
technology objectives in both weightlessness and specific
reduced gravity environments. An organized effort to
validate or refute, and ultimately improve upon the con-
cepts discussed here, is recommended.

Acknowledgment: Bonnie M Paul, RN, BSN, Wyle Labora-
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